OCR Maths S1 Topic Questions from Papers Discrete Random Variables Answers

1 (i)	$k = 1 - \left(\frac{1}{4} + \frac{1}{5} + \frac{2}{5} + \frac{1}{10}\right)$ $\frac{1}{20}$	M1 A1	2	Use $\Sigma p = 1$ or 0.05
(ii)	$E(X) = \sum xp(x)$ $= -1/10$ $\sum x^2 p(x) = 2$ $\sum x^2 p(x) - \mu^2$ $= 1.99$	M1 A1 M1 M1 A1	5	Use $\Sigma xp(x)$ with a value for k and correct signs $-1/10$ or -0.1 only Attempt $\Sigma x^2p(x)$ } or $\Sigma (x-\mu)^2p(x)$: M2 Subtract their μ^2 } Answer, 1.99 or 1 99/100

(Q4, Jan 2005)

2 (i)	$\frac{1}{3} + \frac{1}{4} + p + q = 1$ oe	B1	
	$\begin{vmatrix} 1/_3 + 1/_4 + p + q = 1 \\ 0 x 1/_3 + 1 x 1/_4 + 2p + 3q = 1 1/_4 \end{vmatrix}$ oe	B1	
	equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii) $p = \frac{1}{4}, q = \frac{1}{6}$ oe	M1 A1A1 5	allow one error. ft their equns subst or subtr not nec'y
(ii)	$\sum x^2 p$ (not /4 or /3 etc) (= 2 ³ / ₄) - $(1^1/_4)^2$	M1 M1	≥ 2 non-zero terms correct. dep +ve result indep if +ve result or $(x-1^{1/4})^2p$ (≥ 2 (non-0) terms correct): M2 ft (i) $(0 \leq p, q < 1)$ or letters p, q both M1s
	$= 1.1875$ or $1^3/_{16}$ oe	A1	cao
	$sd = \sqrt{(their 1.1875)} = 1.09 (3 sfs)$	B1f 4	dep 1st M1 & $\sqrt{\text{(+ve no.)}}$ eg $\sqrt{2.75} = 1.66$
Total		9	

(Q5, June 2006)

physicsandmathstutor.com

3 (i)	$1 - (^3/_{10} + ^1/_5 + ^2/_5)$	M1		or $(^3/_{10} + ^1/_5 + ^2/_5) + p = 1$
	¹ / ₁₀	A1	2	
ii	$^{3}/_{10} + 2 \times ^{1}/_{5} + 3 \times ^{2}/_{5}$	M1		$\div 4 \text{ or } 6 \Rightarrow M0A0$
	$^{19}/_{10}$ oe	A1	2	
Total		4		

(Q1, Jan 2007)

4	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	\geq 2 non-zero terms correct eg \div 4: M0
	= 2(.0)	A1	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	M1	\geq 2 non-zero terms correct \div 4: M0
	-2^2	M1	Indep, ft their μ. Dep +ve result
	= 1 physicsandmat	hstutor.co	m ^ · · · ·
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4 : M2$
			\geq 2 non-0 correct: M1 \div 4: M0
Total		5	

(Q1, June 2007)

5 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	$0.2^2 \text{ or } 0.7 \times 0.1$: $M1_2$
	=0.18 AG	A1 3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	≥ 2 terms correct (excl 0×0.49)
			÷ 5 (or 4 or 10 etc): M0
	=0.8 oe	A1	
	$0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	M1	≥ 2 terms correct (excl $0^2 \times 0.49$)
	- "0.8" ²	M1	dep +ve result
	= 0.88 oe	A1 5	cao
			$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
			$0.8^2 \times 0.49 + 0.2^2 \times 0.28 + 1.2^2 \times 0.18 + 2.2^2 \times 0.04 + 3.2^2 \times 0.01$ SC Use original table, 0.4:B1 0.44: B1
Total		8	

(Q1, Jan 2009)

4 6 3 4 3 2

6 (i)	$\Sigma x \div 11$ 70 $\Sigma x^{2} \text{ attempted}$ $\sqrt{\frac{\sum x^{2}}{11}} - \overline{x}^{2} = \sqrt{(54210/_{11} - 70^{2})} \text{ or } \sqrt{28.18} \text{ or}$	M1 A1 M1	≥ 5 terms, or $\sum (x - \overline{x})^2$ or $\sqrt{\frac{\sum (x - \overline{x})^2}{11}} = \sqrt{310}/_{11}$ or $\sqrt{28.18}$
	5.309 (= 5.31) AG	4	ie correct substn or result If \times ¹¹ / ₁₀ : M1A1M1A0
ii	Attempt arrange in order med = 67 74 and 66	M1 A1 M1	or (72.5 – 76.5) – (65.5 – 66.5) incl
	IQR = 8	A1 4	must be from 74 – 66
iii	no (or fewer) extremes this year oe sd takes account of all values sd affected by extremes less spread tho' middle 50% same less spread tho' 3 rd & 9 th same or same gap	B1 1	iii, iv & v: ignore extras fewer high &/or low scores highest score(s) less than last year Not less spread or more consistent Not range less
iv	sd measures spread or variation or consistency oe	B1 1	sd less means spread is less oe or marks are closer together oe
V	more consistent, more similar, closer together, nearer to mean less spread	B1 1	allow less variance Not range less Not highest & lowest closer
Total		11	

(Q6, June 2009)

physicsandmathstutor.com

7 (i)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1		\geq 2 non-zero terms seen
	$=\frac{7}{8}$ or 0.875 oe	A 1		If ÷3 or 4 M0M0M1(poss)
	$ (0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{1}{8} $	M1		\geq 2 non-zero terms seen
	$-(\frac{7}{8})^2$	M1		dep +ve result M1 all4 (x-0.875) ² terms seen.
	$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1	5	M1 mult p, \sum A1 1.11
(ii)	Bin stated or implied 0.922 (3 sfs)	M1 A1	2	Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ ($n+m=10,n,m\neq 1$) or $10C4$ or 5 (or 4 or 6) terms correct
(iii)	$n = 10 \& p = \frac{1}{8}$ stated or implied	M1		
		M1		condone 0.023
	= 0.0230 (3 sfs)	A1	3	Condone 0.023
Total		[10)]	

8 (i)	$\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$ or $\frac{1}{4}$ or $\frac{2}{12}$	B1	or 1 out of 6 or 2 out of 12
	\mathcal{C}_2		or $\frac{2!}{4!} \times 2$
	$(=\frac{1}{6} \mathbf{AG})$		
	$\frac{1}{4} \times \frac{2}{3}$ or $2 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{{}^{4}C_{2}}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one	B1 3	
	$(=\frac{1}{3} \mathbf{AG})$		or $\frac{2}{{}^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
			or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions
	P(X=5) wking as for $P(X=4)$ above		Allow other values with zero probabilities.
	or $1 - (\frac{1}{6}^{\circ} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1	
	6 3 6 5 3		
	P(X=3) wking as for $P(X=6)$ above		
	or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1	or M1 for total of their probs = 1, dep B1
	3 4 5 6		or $P(X=3) = \frac{1}{6}$, $P(X=4) = \frac{1}{3}$, $P(X=5) = \frac{1}{3}$, $P(X=6) = \frac{1}{6}$
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6}$ oe	A1 4	Complete list of values linked to probs
iii	Σχρ	M1	\geq 2 terms correct ft
	$=4\frac{1}{2}$	A1	
	$\sum x^2 p \qquad (=21\frac{1}{6})$	M1	\geq 2 terms correct ft
	$-4\frac{1}{2}$,2	M1	Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5	
Total	12	12	
1 Otal		14	

(Q5, June 2010)

physicsandmathstutor.com

9 (i)	$(0\times a) + 2\times (1-a)$	M1	or $2(1-a)$	Condone $2 \times 1 - a$ NB $2 \times (1 - a) \div 2 : M0A0$
	= 2 - 2a or $2(1 - a)$ oe	A1 2	Not ISW	Eg E(X) = 2 – 2 a ; 2 – 2 a = 1; a = 0.5: M1A0
ii	$(0 \times a) + 2^2 \times (1 - a)$	M1	or $4-4a$ oe	Condone $2^2 \times 1 - a$
	$-"(2-2a)"^{2}$ $= 4-4a-4+8a-4a^{2}$ $= 4a-4a^{2}$ $= 4a(1-a)) AG$	M1 A1 3	- (i) ² dep contains a; ISW; Indep mk or $4(1-a) - 4(1-a)^2$ 4(1-a)(1-(1-a))	$4-4a-4\pm8a\pm4a^2 \text{ or } 4-4a-4\pm4a^2 \text{ or equiv M1M1A0}$ $4-4a-2(1-a)^2 \text{ M1M1A0}$ Must see this line, correctly obtained
	$ \begin{array}{c cccc} & -2 + 2a & 2a \\ \hline & a & 1 - a \end{array} $ M1 $ Var(X) = a(-2 + 2a)^2 + 4a^2(1 - a) $ M1 $ 4a^3 - 8a^2 + 4a + 4a^2 - 4a^3 $		Correct table oe	Careful: $4 - 4a - (2 - 2a)^2 = 4 - 4a - (4 - 4a^2) = -4a + 4a^2 = 4a(1 - a)$ M1M1A0 only
	$4a - 4a^2 $ A1			
Total		5		

(Q7, Jan 2011)

•

PhysicsAndMathsTutor.com

10	(i)	0.1 + 0.3 + 2p + p = 1 oe $p = 0.2$	M1 A1 [2]		
	(ii)	$\sum xp = 2.7 \text{ oe}$	M1 A1f [2]	\geq 2 terms correct, FT p	eg ÷ 4: M0A0

(Q1, Jan 2012)

physicsandmathstutor.com

11		$\frac{1.4}{50} \qquad (=0.028)$ $1.5 + \frac{1.4}{50}$	M1 M1 dep M1	$ \begin{array}{rcl} 1.4 + 50 \times 1.5 & (= 76.4) \\ \frac{76.4!}{50} & & \end{array} $	eg 1.4+1.5 M0M0A0
		= 1.528 or $\frac{191}{125}$ or 1.53 (3 sf) $\frac{0.05}{50} - (\frac{1.4}{50})^2$ or 0.000216 seen	A1	$(\Sigma x^2 - 2 \times 1.5 \times 76.4' + 50 \times 1.5^2 = 0.05)$ $(\Rightarrow \Sigma x^2 = 116.75; \text{ no marks yet})$ $\frac{0.05 + 2 \times 1.5 \times 76.4' - 50 \times 1.5^2}{50} - \text{`}1.528'^2 \text{ all correct}$	not 0.05 _ '1 528' ²
		$\sqrt{0.000216}$ seeii $\sqrt{0.000216}$ = 0.0147 (3 sf)	M1 M1 A1 [6]	fully correct method, ie nothing added etc cao not isw	$\frac{100}{50} - 1.320$

(Q2, June 2012)

physicsandmathstutor.com

12	(i)	2k + 4k + 6k + 8k = 1	M1	or $2 + 4 + 6 + 8 = 20$ M1	Must see correct wk'g for $k = \frac{1}{20}$,
		$k = \frac{1}{20}$ AND $6 \times \frac{1}{20} = \frac{3}{10}$ AG	A1	Must see both for A1	otherwise M0A0
					NB $k \times 6 = \frac{3}{10} \Rightarrow k = \frac{1}{20} \text{ MOA0}$
				or $2k + 4k + 6k + 8k = 20k$ M1	(even if tested by showing that $k = \frac{1}{20}$
				$P(X=6) = \frac{6k}{20k} = \frac{3}{10} $ A1	gives $\Sigma p=1$)
					Just showing $\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$
			[2]		M0A0
	(ii)	$2 \times \frac{1}{10} + 4 \times \frac{2}{10} + 6 \times \frac{3}{10} + 8 \times \frac{4}{10}$ oe	M1	\geq 3 terms correct ft their values of p,	Allow i.t.o. k for M1 $\div 4$ M0
		= 6	A1	$\operatorname{dep}\Sigma p=1$ cao	
		-2 1 .2 2 .2 .2			
		$2^2 \times \frac{1}{10} + 4^2 \times \frac{2}{10} + 6^2 \times \frac{3}{10} + 8^2 \times \frac{4}{10}$ oe (= 10)	M1	\geq 3 terms correct; ft their values of p;	Allow ito k for M1M1 $\div 4$ M0
		- '6' ²	M1	$dep \Sigma p = 1$ ft their values of p; dep +ve result & $\Sigma p = 1$	NOT – $m^2 \div 4$ $\sqrt{4} = 2$ lose final A1, not ISW, unless
			171 1	cao	labelled sd
		= 4	A1		
			[5]		

(Q1, Jan 2013)